Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4659, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405105

ABSTRACT

Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state. A pronounced forward-backward symmetry breaking of the angularly resolved emission patterns with respect to the light propagation direction is experimentally observed and theoretically explained for the region of the Cooper minimum, where the asymmetry of electron emission is strongly enhanced. These findings aim to originate a better understanding of the fundamentals of photon momentum transfer in ionic matter.

2.
Nat Commun ; 8: 15461, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28580940

ABSTRACT

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

3.
Rev Sci Instrum ; 87(8): 083113, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27587106

ABSTRACT

A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

4.
Phys Rev Lett ; 108(3): 033004, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400737

ABSTRACT

We report on the first experimental observation of a new threshold behavior observed in the 5(2)G partial channel in photodetachment of K(-). It arises from the repulsive polarization interaction between the detached electron and the residual K(5(2)G) atom, which has a large negative dipole polarizability. In order to account for the observation in the K(5(2)G) channel, we have developed a semiclassical model that predicts an exponential energy dependence for the cross section. The measurements were made with collinear laser-ion beams and a resonance ionization detection scheme.

5.
Rev Sci Instrum ; 83(2): 02A711, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380220

ABSTRACT

Ion beam purity is of crucial importance to many basic and applied studies in nuclear science. Selective photodetachment has been proposed to suppress unwanted species in negative ion beams while preserving the intensity of the species of interest. A highly efficient technique based on photodetachment in a gas-filled radio frequency quadrupole ion cooler has been demonstrated. In off-line experiments with stable ions, up to 10(4) times suppression of the isobar contaminants in a number of interesting radioactive negative ion beams has been demonstrated. For selected species, this technique promises new experimental possibilities in studies on exotic nuclei, accelerator mass spectrometry, and fundamental properties of negative atomic and molecular ions.

6.
Rev Sci Instrum ; 82(5): 053302, 2011 May.
Article in English | MEDLINE | ID: mdl-21639495

ABSTRACT

An apparatus for photodetachment studies on atomic and molecular negative ions of medium up to heavy mass (M ≃ 500) has been designed and constructed. Laser and ion beams are merged in the apparatus in a collinear geometry and atoms, neutral molecules and negative ions are detected in the forward direction. The ion optical design and the components used to optimize the mass resolution and the transmission through the extended field-free interaction region are described. A 90° sector field magnet with 50 cm bending radius in combination with two slits is used for mass dispersion providing a resolution of M∕ΔM≅800 for molecular ions and M∕ΔM≅400 for atomic ions. The difference in mass resolution for atomic and molecular ions is attributed to different energy distributions of the sputtered ions. With 1 mm slits, transmission from the source through the interaction region to the final ion detector was determined to be about 0.14%.

SELECTION OF CITATIONS
SEARCH DETAIL
...